CRITICAL LOAD OF A MICROPILE
CONSIDERING SOIL LIQUEFACTION
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In this paper, we first set up a mathematical model of a single pile subjected to axial load with
mitial horizontal displacement in elastic soil, then obtained critical loads and expressed them in
nondimensional form. Based on the results from parametric study, we found that the critical load
decreased with the increment of the initial displacement and the effect of it is very small, but the effect
of the reduction of soil spring due to liquefaction on the decrease of the critical load is significant.
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1. INTRODUCTION

According to recent post-earthquake mvestigation
reports, we can see plenty of damage pattems of piles and
pile foundations"*® Some of them were caused by strong
ground motions and some of them by liquefaction-induced
large ground displacements. When a pile foundation is
subjected to liquefactioninduced large ground
displacement, the behavior of the foundation is very
complex because of geometric nonlinearities and material
nonlinearities of both pile and soil. In other words, so-called
P—A effect due to lateral ground displacement, reduction
of the rigidity of flexure of the pile due to large deformation,
and reduction of soil spring coefficient due to the occurrence
of liquefaction. From the purpose of design, we need to
understand the ultimate state of the pile foundation under
such conditions, and to do so0, we need to analyze the
stability of the pile foundation.

To attempt to analyze the stability of the pile foundation,
we must calculate the critical load of a pile at first based on
the stability theory. During past several decades, some
researchers, such as Bjerrum® Mascardi®, Mandel®,
Fleming® | et al, studied the critical load of pile for
different types. Their results present useful information for
the purpose of design of pile foundation, however, they did
not consider the pile deformation. In this paper, we study
the critical load of a pile with initial deformation in elastic
ground as a first step of the nonlinear stability analysis of
pile foundation.

Based on the assumption that the surrounding ground is
expressed as distributed soil springs, we first set up the
geometrically nonlinear mathematical model of a

single pile with initial deformation. Then by solving the
problem, we obtained critical loads in nondimensional form.
By applying the actual values of diameter, length, flexure of
rigidity of a pile and Nvalues of ground efc to the
nondimensional solution, we performed parametric study
to investigate the effect of the magnitude of initial
deformation and the reduction of the soil spring due to
liquefaction on the critical load.
2. GOVERNING EQUATION

We assume that the pile foundation has initial
deformation of ufs) in x direction and wyfs) n y
direction as shown in Fig.1. The domain occupied by the pile

at the initial state before additional deformation due to the
application of axial load P occurs is expressed as

Fnzgx,y1x=s+uu(s), y=w,(s) 0<s</}

in which, s €[0,/] is the coordinate along the pile axis and
[ is the length of the pile (see Fig. 1).

8,(s) is an angle between tangent line and x -axis at
Point C . From Fig.2, we can get the following geometric
relations,
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Fig.1 Initial deformation of a pile
and the coordinate systems

du: C,

Fig2 Geomeiric relation of the infinitesimal
pile length at the mitial state

Equations (1) are nonlinear because there are nonlinear
terms , cosé,(s), siné,(s), in the equations. It should be
noted that 1=1+u’(s)=u,(s)=0 and 8,(s)=w.(s) in
the linear problem.

Hereafter, we express u,,w, etc instead of
u,(s), w,(s) etc. for the simplicity unless
misunderstanding occurs.

Let g(s) be the reaction of soil. and the pile is subjected
to axial external force P at the point of s=/. After
applying the force, an arbitrary point C(s +u,, w, ) in the
I, moves to pont C'(s+u, +u, w,+w), and the pile
occupies the new domain of

F:{(r,y):rzs+uo +u, y=w, +w,{}£.5'£!}

in which, #» and w are additional displacements in x-
direction and y -direction causedby P respectively.
(1) Geametric relationship
We have following nonlinear geometric relationships in
the same way as equation (1).
cos@=1+u, +u' =cosl, +u'

@

sinfd=w, +w'=sing, +w’

in which, 8(s) is an angle between tangent line and x-
axis (see Fig.3).
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Fig3 Notations of pile after deformation
caused by axial external force P
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(2) Equilibrium equation

The soil reaction g(s) is obtained by multiplying the soil
spring stiffness & and deformation of the pile at point
C'(s+u, +u, w,+w). By assuming that the direction of
g(s) is narmal to the pile after application of the force (see

Fig 4), we get
q(s)=kfu(s)sin 6(s)+w(s)cos &(s)} &)

in which, the spring stiffness % is determined by
multiplying the reaction coefficient %, and pile diameter
D as commonly done.
From the equilibrium at point C' in the transverse
direction of the pile (see Fig 3), we get
]
Q(s)+ Psind(s)- jq(r)cos(ﬁ(s) - 5(1'))11’ =0 4

that is

0(s)+ Psind(s)- kj (s#(r)cos &(z)

+u(7)sin 6‘(7])003((;(5)— A(c)dr =0



in which, QO(s) is the shear force at point C’.
(3) Constitutive equation
The constitutive equation 1s given as
Q=EIg"-6;) ®

in which, EI isthe flexural rigidity of the pile.
(4) Boundary condition

We assume that both sides of the pile is simply supported
(S.S), in which the boundary conditions are

{u({)} w(0)=0, 8'00)= a*(o) -
()=0, ()=6.()=0

The nonlinear boundary value problems are egs. (2), (),
(6 and (7).

Substituting constitutive equation (6) into equilibrium
equation (5) of the pile, and by differentiating eq.(5) with
respect to 5, we can get

EI(@™ - 67)+ P cos 06" +k|usin 8+ w cos 4

- kr(w (r)cos 8(z)+ulr)sin 8(z))sin(0(z)-O(s)dr (B
% 6"(5) =0

From the differentiation of the second equation of eq.(2)
by s.we obtain

cos80' =w" +w; ©

When the problem is limited in small deformation, that
is, w(s), u(s) 6(s)-6,(s)are small, from eq. (2), we
get u' =cosf - cosd, - 0andw' =sind —sinb, - 6 -6,.
Furthermore, we get #=0 because of u(0)=0 and

u'=0.

We can assume that w(s)=o(e), u(s)=o(g)., and
8(s)=ols), soweget

kj (w(7)cos 8(r)+ulz)sin &(7))sin(6(r) - 6(s)ki+
=ols)

Thus, we can neglect the integral term in the equation
(8) for simplicity of the problem.

Substituting eq.(9), w' =€ -6, and =0 into eq.(7) and
eq, (8), thus, we have boundary value problem as follows;

ERw™ + Pw" + kcos O,w = —Pw]

w(0)=w(0)=w())=w"(1)=0 (10)

The following non-dimensional parameters are
introduced.

=2 w=2 yu-=
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Substituiing eq.(11) into eq.(10), the non-dimensional
boundary value problem becomes;

W L AW + acosO,W =-AW;! a2
w©)=w"(0)=w1)=w"(1)=0
The problems (12) are valid under the condition that the
mﬂ:alddlactummaybelalge,buttheaddm;mal
deformation due to axial external force is small, ie,
w(s), uls), 6(s)-6,(s) aresmall

3. CRITICAL LOAD OF PILE

In this chapter, we will discuss the eritical load obtained
from problem (12), then give the limit of critical load The
crifical load that we get is that of pile with mital
deformation, which is different from other researchers.

Let @, =acosf,, which is the given constant, the
characteristic values and corresponding characteristic
functions of eq.(12) are

A, —m;r +

, (m=12,..) 13

W_ =sinmx

Let
A, =minfd_}=1_ (14)

then from the egs. (11) and (13), the critical load and the
corresponding characteristic function are

Pcr = !—2 Acr
. (15)
W, (s) =sin m!ir

8

We can see from the above equations that the critical
load is the function of m", and m" is the function of «, .
We will discuss the value of m”™ according to the
magnitude of «, as follows.

According to eq (13), if we set function

= 49_
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Fig. 5 Minimum valueof £(7)
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flm*7?)=m*z* +—2—. the minimum value of / is

P

mez’
2,Ja, at the point of m°7* = [z, (see Fig.5. In our
problem, 7{n*z?)=2_ . So cur object is finding suitable
mnteger m that makes f[m:fr:)= A_ minimum.
When (111':?)2 =.Ja, <7° ,wehave m =1 certainly.
When (n'z) =Ja, <(z). thatis, m™ is 1or 2, we
still have m™ =1 if f(r*)< f{45*) because smaller
function value, f(z*). is the critical load which
carresponds to m =1. From f(rrl)sf(hz). ie.,
= <dr’+——, we get Es 27° by subtracting

the left term from the right term. So we can get conclusion
a, <27,

a .

=
T+

that m~ =1 when

Accordingly, when 27° <(m';rr]3 :Jas 47°, we have
m =2.

When (27)° g(m':r)l = Ja, <(3z),thatis, m” is20r
3, we still have m =2 if f(4arz):;f(9:r’)_ From
f(4:r’)$ f(Q;I’], we get J&:Sﬁﬂ'! in the same way as
above. So we can get conclusion that m =2 when
2r* < Ja, <6z

We can get following conclusion by analogy:

m*(@,)=m, when

mm—1)7* :J{Zsm(m +1)7’

m=2 (16)

4

By using @, =%-m53° in eq (16), we obtain the
following relations:

W

W

Fig. 6 The nominal hinge of pile

m ())=m, when m(m-1)z* £
kcosd,
m=2 (17
5 . EI
I~ < +1)r-
<t <mlm-+1)r kcosé,

When £=0, a,=0, then, m =1, A, =7", and
P, =Eiz’[I*, which is the Euler Critical load The
corresponding characteristic function is ‘I-l'“(S)=Siﬂi;—S, it
has only one maximum value as shown in Fig.6.

When k>0, a,>0, m changes corresponding to /
from eq.(17), that is m” =m (/). If / is enough long, we
can assume that m~ > 2 because larger m" is required for

longer / to satisfy eq (17). Let [0./] be equally divided
into m", the points which cross s -axis as shown in Fig. 6

-31'9 5,—=L.f, (i=01...m"). They give w_(s,)=0 and
m

w” (s,)=0, and correspond to the nominal hinge.
Tt should be pointed out that P, (/) is the critical load of

the following problem in which the length of the pile is
!

m

) ' y=—Pyw”
Elw'" + Pw" + kcos @, B as)

w(0)=w(0)=w(s,)= w(s,)=0
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Fig. 8 The relationship between A_ and g1

We can calculate the critical load P, () by using eq.(18)

for the long pile surrounded by soil
From eq.(17), it geis

\/_q

k cos 67 - m m
(19
5:_ JI + — 4 T
m k cos 9,
[t shows that the equivalent lengih of the pile, L , of the
) m

yoblem (18) is less than .JH—ITqJ = 7, and
m V\kcosd,

yecause m~ -« when /- o, wecanget

I EI
l
22 ) Vkcosa, @

Furthermore, we get
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By substituting eq. (20) into eq. (21), we get
limP, (1)=2,/Elk cos 6, 22
Eq. (22 shows that limP, (/)=0 when there is no soil
reaction in the problem (10), thatis, £ =0.

4. EXAMPLE

- We choose one type of pile of which diameter is 177.8mm.
The soil spring stiffness % is determined based on the

specifications for highway bridges [7], that is
k=k,D @3)

_5—1_
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Fig. 10 The liquefaction of pile

in which, k, is the reaction coefficient and D is the
diameter of the pile.
k,, can be calculated from the following equations:

1
kﬂ =§—6ED

E,= 2(1+unk}p

7
v, =05, G, =¢V§,

_52_

7, =17, Ve =, V,
¢, =08, V, =80N}

The parameters of the pile used in the parametric stud;
are shown in Thble 1.

We get the dimensionless critical load A, of the piles a
shown in Fig7 from eq (12), in which, w,(0)=0
8, (s) = const . As another example, we also cakulated th
critical load of a pile of which one side is simply supported,



Table 1. Parameters of a micropile
External Internal Flexural Length
Diameter Diameter Rigidity
D(mm) d(mm) Elfm? ! (m)
177.8 152.5 473 15

bui the other is clamped (C.S). We can see when inifial
deflection is increased, the dimensionless critical load of the
pile is decreased correspondingly But the effect of the
inifial deflection is small

We also caleulate the relationship between 4, and A1
as shown in Fig8 in which A/ is a dimensionless

. Because the critical load is the

k
ter,and S =1
parame B 15

function of integer m", and m" changes corresponding to
the change of / as can be seen from eq. (17), the curve of
7 becomes a multiply bent curve for different m” .

The relationships between P, and / for different N-

value are calculated as shown in Fig. 9. Because of the
nominal hinge at the point s, and the different m" due to
the change of the length /., the solution P_ becomes a

wavy curve and has a limit value of 2+Elkcosé for
I —>w.

In Fig. 9, we can see the crifical load increased when the
N-value increased.

The effect of soil liquefaction on the P, is shown in Fig
10. Here, the effect of the liquefaction is expressed as the
reduction of the soil spring. It reveals that the effect of
liquefaction is very significant, the critical load when the
liquefaction occurs is very low compared with that when
liquefaction does not occur:

5. Concluding remark
In this study we studied the single pile foundation with

initial deflection. First, we derived the set of geometrically

nonlinear equations for the problem. Then, we performed a

series of parametric siudy to examine the critical load The

main resulis are summarized as follows:

(1) The critical load of pile foundation is correspondingly
decreased when initial deflection is increased, but the
effect of the initial deflection is small..

(2) We thearetically obtained the ultimate critical load for
the infinite pile length. That IS,

I;jj:EP‘, ()= 21/E!kcos g, .

@3) The effect of liquefaction is very significant, the critical
load when liquefaction cccurs is very low compared
with that when liquefaction does not occur:
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